Dynamical spatial land-use models

Nicolas Bousquet, Nicolas Desassis & Frédéric Mortier

CoForTips Project Brussels October 27-30, 2014

F. Mortier

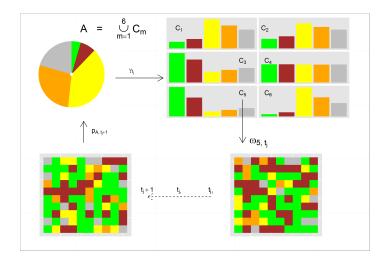
June 2014 1 / 16

We focus on different spatial nested levels: (i) Congo Basin, (ii) country, (iii) region, (iv) village, ...

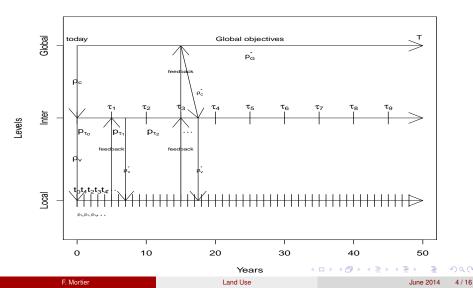
Objective:

modeling the evolution of activities in time and space at each level and their interactions subject to global objective constraints.

Objective and ideas: graphical representation



Objective and ideas: graphical representation



Example: One country, three villages

- a country aims to reach: 30 % crop, 50% of (natural or secondary) forests, and 20 % dedicated to others.
- 3 villages with relative surfaces $\delta_v = c(1/2, 1/3, 1/6)$, with following activities

activities	p _{V1}	\mathbf{p}_{V_2}	\mathbf{p}_{V_3}	Observed: p ⁰ _c	target: p [*]
Crop	10%	30%	27%	19.5%	30%
Forests	65%	51%	23%	53.3%	50%
Others	25%	19%	50%	27.2%	20%

Question 1: Find an efficient way to distribute \mathbf{p}_c^{\star} into the 3 villages

	ortier

Example:

Solution 1: Minimal effort

Minimal effort

$$\mathbf{p}^{\star} = (\boldsymbol{p}_{1}^{\star}, \dots, \boldsymbol{p}_{V}^{\star}) = \arg\min_{\pi} \sum_{v}^{V} \delta_{v} \sum_{k}^{K} ||\pi_{kv} - \boldsymbol{p}_{kv}^{0}||_{I}$$

where $||x||_l$ is the L_l -norm (distance).

- e under the following constrains:
 - global constraints

$$\sum_{\nu=1}^{V} \delta_{\nu} \pi_{k\nu} = p_{kc}$$

probability constraints

$$\sum_{k=1}^{K} \pi_{kv} = 1 \quad \text{and} \quad p_{kv} \in [\min_{kv}, \max_{kv}],$$

where $min_{kv} \ge 0$ and $max_{kv} \le 1$ are defined by users.

F. Mortier

Objective and gradient functions

Objective function

Rewritting the objective function and constraints, the problem can be expressed as:

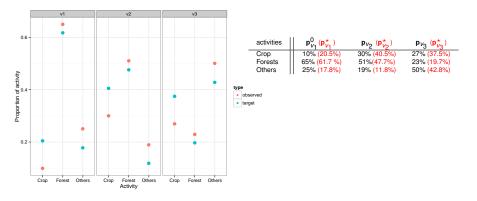
$$f(\pi) = \sum_{v}^{V-1} \delta_{v} \left[\sum_{k=1}^{K-1} ||\pi_{kv} - p_{kv}^{0}||_{l} + ||\sum_{k=1}^{K-1} (\pi_{kv} - p_{kv}^{0})||_{l} \right] \\ + \delta_{V} \left[\sum_{k=1}^{K-1} ||\frac{1}{\delta_{V}} \left(p_{kc} - \sum_{v=1}^{V-1} \delta_{v} \pi_{kv} \right) - p_{kv}^{0}||_{l} + ||\frac{1}{\delta_{V}} \left(p_{Kc} - \sum_{v=1}^{V-1} \delta_{v} \left(1 - \sum_{k=1}^{K-1} \pi_{kv} \right) \right) - p_{KV}^{0}||_{l} \right]$$

with (K - 1)(V - 1) free parameters and $p_{kv} \in [min_{kv}, max_{kv}]$

The gradient functions (first derivatives) as well as R code have been written.

・ロト ・回ト ・ヨト ・ヨト

Example: Minimal effort and Conditional chain rule



Question 2: Modeling the observed dynamics of the activities for each village

	4		৩৫৫
F. Mortier	Land Use	June 2014	8 / 16

Example: dynamics in one village \mathbf{p}_{v}^{0}

Solution 2: Multivariate autoregressive process

Consider the following transformation:

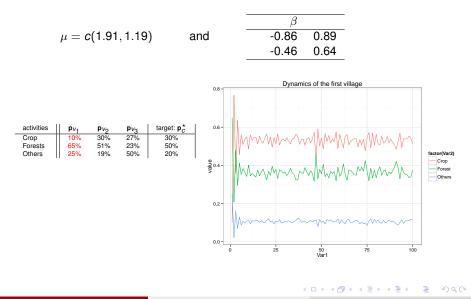
$$\mathbf{p} \quad \mapsto \quad \left(\log\left(\frac{p_1}{p_{\mathcal{K}}}\right), \dots, \log\left(\frac{p_{\mathcal{K}-1}}{p_{\mathcal{K}}}\right)\right) = \xi$$

at the village level, the "observed" dynamics is assumed to be modeled by a vector autoregressive model of order one (VAR(1)).

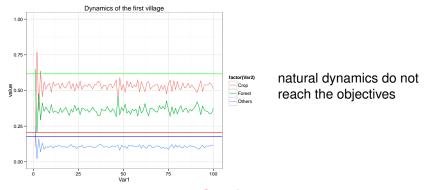
$$\xi_{kv}^{0}(t+\Delta_{v}t)=\mu_{kv}+\sum_{l=1}^{K-1}\beta_{lk}\xi_{lv}^{0}(t)+\sum_{r}^{R}\theta_{v}^{r}x_{v}^{r}(t+\Delta_{v}t)+\varepsilon_{kv}(t+\Delta_{v}t)$$

where β and θ are unknown parameters associated to previous activities and environmental covariates, and ε_k is a logistic-Gaussian process such that $\mathbb{C}ov(\varepsilon_{kv}(\tau), \varepsilon_{k'v}(\tau')) = \sigma_{kk'v}$ if $\tau = \tau'$ and 0 elsewhere.

Example: dynamics in one village \mathbf{p}_{ν}^{0}



Example: dynamics in one village \mathbf{p}_{ν}^{0}



Question 3: Modeling the stimulus process

	ortier

June 2014 11 / 16

Construction of stimulus process

Solution 1: mixture modeling approach

at the village level, objective is to reach \mathbf{p}_{ν}^{\star} Stimulus processes can act on β parameters.

- estimate parameters β : $f(\hat{\beta}) \equiv \mathcal{N}(\beta, \Sigma_{beta})$
- **2** for one observed time, and objectives \mathbf{p}_{v}^{\star} , calculate

$$\beta^{\star}(t)$$
 such as $\phi(p_{kv}^{\star}) = \xi_{kv}^{\star} = \mu + \sum_{l=1}^{K-1} \beta_{lk}^{\star}(t)\xi_{kv}(t)$

under constraints that:

$$\xi_{\mathbf{v}}^{\star} = \mu + \beta^{\star} \xi_{\mathbf{v}}^{\star}$$

The Stimulus process is defined as a ρ such that:

$$\beta^{Stim} \equiv \rho \times \beta^* + (1 - \rho) \times \hat{\beta}$$

Example: modeling stimulus process

If
$$\rho = 1$$
 and $\mu = c(1.91, 1.19)$ and $\frac{\beta^*}{-0.56 \quad 0.15} -0.87 \quad 0.24$

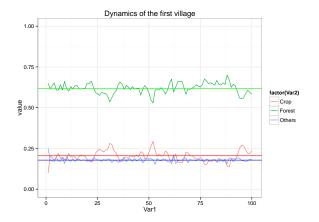
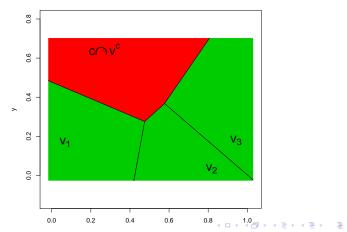


Image: A matrix

June 2014 13 / 16

Multiscale generalization: country with its own dynamics

Each country is assumed to be divided in two areas:



Intermediate levels

dynamics on activities at the country level

$$p_{kc}^{0}(\tau + \Delta_{c}\tau) = \left(\delta_{c\cap\nu}\sum_{\nu=1}^{V}\delta_{\nu}p_{k\nu}^{0}(\tau + \Delta_{c}\tau) + \delta_{c\setminus\nu}p_{kc\setminus\nu}^{0}(\tau)\right) \oplus \varepsilon_{c}(\tau + \Delta_{c}\tau)$$

and

$$\xi_{k\setminus\nu}^{0}(\tau) = \mu_{kc\setminus\nu} + \sum_{l=1}^{K-1} \omega_{lk} \xi_{lc\setminus\nu}^{0}(\tau - \Delta_{c}\tau) + \sum_{r}^{R} \theta_{c\setminus\nu}^{r} x_{\nu}^{r}(\tau) + \zeta_{kc}(\tau)$$

novelty at the country level:

- **p**_c can deal with more activities, such as mines, ...
- Country able to act on relative surface of each village δ_ν by increasing or decreasing it.

(日)

Questions that need to be answered

If you agree with the dynamics models,

- Are there any data available to fit the model? In what format are they available? Can they be used now ?
- Who will help us for the analysis? Calibration, validation...
- Who will takes care (with us) of the programming/coding? Relevant R packages exist, some simple code are available, but the bulk of the work remains to be done
- how to calibrate ρ , β^* , or $\tilde{\omega}$?

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))